edexcel

Mark Scheme (Results)

Summer 2013

GCE Chemistry 6CH02/01R Application of Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code US035561
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme
Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication
Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	B		1
Question Number	Correct Answer	Reject	Mark
2	A		1
Question Number	Correct Answer	Reject	Mark
3	C		1

Question Number	Correct Answer	Reject	Mark
4	B		1

Question Number	Correct Answer	Reject	Mark
5	D		1

Question Number	Correct Answer	Reject	Mark
6	A		1

Question Number	Correct Answer	Reject	Mark
7	B		1

Question Number	Correct Answer	Reject	Mark
8	A		1

Question Number	Correct Answer	Reject	Mark
9	B		1

Question Number	Correct Answer	Reject	Mark
10	C		1

Question Number	Correct Answer	Reject	Mark
11	D		1

Question Number	Correct Answer	Reject	Mark
12	D		1

Question Number	Correct Answer	Reject	Mark
13	B		1

Question Number	Correct Answer	Reject	Mark
14	A		1

Question Number	Correct Answer	Reject	Mark
15	B		1

Question Number	Correct Answer	Reject	Mark
16	D		1

Question Number	Correct Answer	Reject	Mark
17	C		1

Question Number	Correct Answer	Reject	Mark
18	D		1

Question Number	Correct Answer	Reject	Mark
19	C		1

Question Number	Correct Answer	Reject	Mark
20	A		1

Total for Section A = 20 Marks

Section B

Question Number	Acceptable Answers	Reject	Mark
21	In (a) any units given must be correct. (a) (i) IGNalise once only only If rounding is done then must be except 1SF. Penalise once correct, penalise once only TE throughout $n=(0.100 \times 0.0141)=1.41 \times 10^{-3} /$ $0.00141(\mathrm{~mol})$	1×10^{-3}	1

Question Number	Acceptable Answers	Reject	Mark
21	$7.05 \times 10^{-4} / 0.000705(\mathrm{~mol})$	$7.10 \times 10^{-4} /$	1
(a) (ii)	ALLOW TE $=$ ans to (i) $\div 2$	0.000710	
	1.4×10^{-3} gives 7.0×10^{-4} 0.0014 gives 0.00070		

Question Number	Acceptable Answers	Reject	Mark
21			
(a) (iii)	$\mathrm{c}=\left(7.05 \times 10^{-4} \div 0.05\right)$ $=1.41 \times 10^{-2} / 0.0141\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ ALLOW TE $=$ ans to (ii) $\div 0.05$ OR ALLOW TE $=$ ans to (ii) $\times 20$	1	

Question Number	Acceptable Answers	Reject	Mark
$\begin{align*} & 21 \tag{1}\\ & \text { (a) (iv) } \end{align*}$	$\begin{align*} & \mathrm{Ca}(\mathrm{OH})_{2} \mathrm{M}_{\mathrm{r}}=74.1 \\ & \text { ALLOW } 74 \\ & \mathrm{~m}=\left(1.41 \times 10^{-2} \times 74.1\right)=1.04481 \\ & \quad=1.045=1.04\left(\mathrm{~g} \mathrm{dm}^{-3}\right) \tag{1} \end{align*}$ If $M_{r}=74$ then $m=1.0434=1.04\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$ ALLOW TE = ans to (iii) $\times 74.1$ ALLOW TE for second mark if ans to (iii) x incorrect Mr value OR $\begin{equation*} 7.05 \times 10^{-4} \times 74.1=0.0522405=0.0522 \tag{1} \end{equation*}$ (g) $\begin{equation*} (0.0522 \div 0.05)=1.044\left(\mathrm{~g} \mathrm{dm}^{-3}\right) \tag{1} \end{equation*}$	1.05	2

Question Number	Acceptable Answers	Reject	Mark
21 (a)	It's only a rangefinder / It's a rough OR approximate titration / It's an estimation / (v) Overe than 0.2 cm^{3} from other titres /	Not titrated accurately It is not precise Control Just 'it's a trial'	1
ALLOW It is anomalous / It is out of range It differs / is not consistent with titrations 1 and 2 Titrations 1 and 2 are more consistent	If a list of suggestions is given, a wrong cancels a right	(Not concordant	

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 21 \\ & (\mathrm{a})(\mathrm{vi}) \end{aligned}$	Pipette $50.0 \mathrm{~cm}^{3}$ (of distilled water) into weighed beaker and find the mass ALLOW "fill the pipette" (with water) and transfer into weighed beaker and find the mass / measure the mass of the pipetted distilled water ALLOW alternative containers to beaker. Use the density of water to determine the exact volume / density of water is $1(.00) \mathrm{g}$ cm^{-3} /check it weighs $50(.0) \mathrm{g}$ Stand-alone marks	"Transfer $50 \mathrm{~cm}^{3}$ water into a beaker" without reference to pipette. Approx. 50g Use of lime water Use of solution	2

Question Number	Acceptable Answers	Reject	Mark
21 (b)	A - (Strong) heat / high temperature $\mathrm{B}-\mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O} \quad$ (Both needed) C - $\mathrm{Ca}(\mathrm{OH})_{2}$ D - Ca IGNORE state symbols even if wrong IGNORE any number in front of species, e.g. $1 / 2 \mathrm{O}_{2}$ or 2 Ca given in D	Warm / Gentle heat Reflux Combustion / burnt Answers suggesting reaction with air or oxygen CaCl CaOH Ca_{2}	4

Question Number	Acceptable Answers	Reject	Mark
21 (c)	Bubble(s) / Fizz(ing) / Effervescence	Coloured or colourless fumes Cloudy solution Just 'CO forming'	1
	IGNORE references to colourless solution, solid disappearing and energy / temperature changes and further tests eg effect on limewater	Just (colourless) gas forming' Bubbles of any gas except CO 2	

Question Number	Acceptable Answers	Reject	Mark
21 (d)	Method 1: Calcium is larger ion / calcium has a bigger ionic radius / or reverse argument for magnesium ion Use of the reverse argument applies throughout (Distance between centres of ions increases so) weaker attraction/weaker bond between (calcium and carbonate) ions OR Shielding is greater in the calcium ion so weaker attraction (of calcium nucleus for carbonate ion) Method 2: Calcium ion has a lower charge density weaker attraction (between ions) IGNORE references to polarization and the breaking of the covalent bonds in the carbonate ion	Calcium is bigger Any reference to atoms/molecules scores 0 Reference to ionization energy/weaker attraction for own electrons	2

Question Number	Acceptable Answers	Reject	Mark	
21 (e)	Calcium's flame is yellow-red /orange-red / red / brick red Magnesium has no colour (Both needed for first mark)	Crimson	3	
	Electrons excited / promoted (by heat energy) (Colour produced from) energy / light emitted as electron returns (to ground state)	Magnesium is white / bright Just "Mg / Ca decomposes" Electrons escape the orbitals		

Total for Question 21 = 18 Marks

Question Number	Acceptable Answers	Reject	Mark
22 (a)	$\begin{aligned} & 2 \mathrm{Na}+\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{O}^{(-)} \mathrm{Na}^{(+)} \mathrm{CH}_{2} \mathrm{O}^{(-)} \mathrm{Na}^{(+)} \end{aligned}$ This equation scores (2) marks Accept multiples and $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ and $\left(\mathrm{CH}_{2} \mathrm{O}^{(-)} \mathrm{Na}^{(+)}\right)_{2}$ Organic product (Charges not needed) Balancing and the rest ALLOW for one mark: $\begin{aligned} & \mathrm{Na}+\mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OH} \longrightarrow \mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{O}^{(-)} \mathrm{Na}^{(+)} \\ & +1 / 2 \mathrm{H}_{2} \\ & \text { Accept multiples } \end{aligned}$	$2 \mathrm{CH}_{2} \mathrm{O}^{(-)} \mathrm{Na}^{(+)}$ $\begin{equation*} \mathrm{CH}_{2} \mathrm{Na}^{(+)} \mathrm{O}^{(-)} \mathrm{CH}_{2} \mathrm{Na}^{(+)} \mathrm{O}^{(-)} \tag{1} \end{equation*}$ Reject bond from C to Na	2

Question Number	Acceptable Answers	Reject	Mark
22 (b)	Remove thermometer / still-head / leave the top of condenser open (1) Place condenser directly on top of flask/in (1) vertical position ALLOW correct diagram for 2 marks	Sealed apparatus, e.g. with thermometer in the top	2
	IGNORE comments on use of electric heaters, changing concentration of reagents		

Question	Acceptable Answers	Reject	Mark
22 (c)	 ALLOW the OH bond to be displayed ALLOW displayed formula as 'working out' ALLOW any orientation IGNORE bonds of different lengths or incorrect bond angles	 Just 'Structural formula' Bond from carbon clearly to the H of the OH	1

Question Number	Acceptable Answers	Reject	Mark
22 (d)	Both have OH / hydroxyl groups	Hydroxide ions	1
	Both would produce steamy / misty /white and fumes /gas (of HCl)	White smoke Just 'both produce HCl' Both give the same products'	

| Question
 Number | Acceptable Answers | Reject | Mark |
| :--- | :--- | ---: | :--- | :--- |
| $22(\mathrm{e})(\mathrm{i})$ | $($ Strong $)$ Peak at $1750-1700\left(\mathrm{~cm}^{-1}\right) \quad(1)$ | peak at 3300-2500
 $\left(\mathrm{cm}^{-1}\right)$
 peak at 3750-3200
 $\left(\mathrm{cm}^{-1}\right)$ | 2 |
| | Peak(s) (either or both) at $2900-2700\left(\mathrm{~cm}^{-1}\right)$
 (1) | | |

Question Number	Acceptable Answers	Reject	Mark
22 $($ e) (ii)	(Unreacted) ethanol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} /$ /displayed /skeletal IGNORE references to O-H bonding	Molecular formula Just "O-H in alcohol" Ethane-1,2-diol	1

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 22 \\ & (\mathrm{e})(\mathrm{iii}) \end{aligned}$	$\begin{aligned} & \mathrm{COOH}^{+} \\ & \text {ALLOW } \mathrm{CO}_{2} \mathrm{H}^{+} \\ & \text {ALLOW } \mathrm{CH}_{3} \mathrm{COO}^{+} \\ & \text {ALLOW } \mathrm{CH}_{2} \mathrm{COOH}^{+} \end{aligned}$ ALLOW the + sign wherever it is seen Also allow correct displayed, semi-displayed or structural formulae	COOH^{-}or any other formula with charge $\begin{aligned} & \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}^{+} \\ & \mathrm{CH}_{3} \mathrm{COOH}^{+} \\ & \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{+} \\ & \hline \end{aligned}$	1

Question Number	Acceptable Answers	Reject	Mark
22 (f)(i)	One mark for curly arrow from hydroxide ion; (This arrow can be drawn from anywhere on the hydroxide ion) One mark for curly arrow from $\mathrm{C}-\mathrm{Br}$ bond Correct products; If SN1 is shown, then intermediate with positive charge must be shown after loss of Br , followed by attack by hydroxide. This mechanism can score all 3 marks	Carbon with ∂ - Bond to H of OH	3

Question Number	Acceptable Answers	Reject	Mark
22 (f) (ii)	Mechanism: Nucleophilic Type: Substitution ALLOW either way round Just S_{N} scores (1) ALLOW nucleophile and phonetic spelling IGNORE Heterolytic fission	Elimination SN with elimination or other type of reaction Homolytic fission	2

Question Number	Acceptable Answers	Reject	Mark
$22(\mathrm{~g})$	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AgBr}(\mathrm{s})$		
Species			
	State symbols ALLOW one mark for chemical equation with	Spectator ions included	2
	(1) state symbols rather than ionic equation, e.g. $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{NaBr}(\mathrm{aq}) \longrightarrow \mathrm{AgBr}(\mathrm{s})$ $+\mathrm{NaNO}_{3}(\mathrm{aq})$		

Question Number	Acceptable Answers	Reject	Mark
22 (h)	Both silver chloride and silver bromide dissolve /give colourless solution in conc. ammonia (1)	Alternative tests which don't work eg displacement of bromine, use of organic solvent, leave in sunlight to see if bromine forms, add conc. sulfuric acid to	2
halide solution.			
ammonia then it is silver bromide	OR	Add conc. sulfuric acid to the (solid) silver bromide and get red-orange bromine gas (1)	

Total for Question 22 = 19 Marks
Total for Section B = 37 Marks

Section C

Question Number	Acceptable Answers	Reject	Mark
$23(\mathrm{a})$	$\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2}$		
IGNORE state symbols even if wrong			
ALLOW multiples			

Question Number	Acceptable Answers	Reject	Mark
$23(b)$	Correct shared pairs of electrons between the two oxygens and two lone pairs of electrons on each of the oxygens		1
	ALLOW either all dots or all crosses $\vdots \times ~_{x}^{x}$ IGNORE any 'circles' given If inner electrons given then must be correct		

Question Number	Acceptable Answers	Reject	Mark
23 (c)	One shared electron pair between each hydrogen and an oxygen Rest of molecule correct (IGNORE positions of hydrogen around molecule) Second mark consequential on first ALLOW either all dots or all crosses, even triangles IGNORE any 'circles' given	Both hydrogens bonded to the same oxygen (0)	2

Question Number	Acceptable Answers	Reject	Mark
23 (d)	Bond Angle $=104.5^{\circ}-95.0^{\circ}$ ALLOW 105° Electron pairs repel to the maximum extent (1) / minimal repulsion Lone pairs repel more than bonded pairs (1) Stand-alone marks	Atoms repel	3

Question Number	Acceptable Answers	Reject	Mark
23 (e)	Glucose is a renewable / sustainable resource OR	Just 'safe' Just 'cheaper'	2
	Glucose is readily available (in the body or (1) from plants)	Just 'harmful' $\mathrm{H}_{2} \mathrm{O}_{2}$ is toxic/produces free radicals / more dangerous/poisonous (than glucose) / corrosive / introduces gas bubbles / (powerful) oxidizing agent	which is a greenhouse gas

Question Number	Acceptable Answers	Reject	Mark		
$23(\mathrm{f})$	$\mathrm{H}_{2} \mathrm{O}_{2}$ has hydrogen bonds (1) IGNORE any references to London forces and dipole-dipole interactions provided hydrogen bonds have the major effect	Hydrogen bonds within the molecule	2		
	Extra energy / More energy (than expected to break) IGNORE the number of hydrogen bonds quoted for each molecule or between each	High energy			
Second mark consequential on first mark				\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
23 (g)	Method 1		3
	Stream of $\mathrm{H}_{2} \mathrm{O}_{2}$ liquid	Stream of $\mathrm{H}_{2} \mathrm{O}$	
	(Idea of) charging a comb / rod /balloon / other suitable	Use of metal rod	
	Put near 'stream' and stream is diverted /attracted /deflected if polar	Movement away from 'charged instrument'	
	Method 2		
	Add to a non-polar solvent		
	Named non-polar solvent		
	(formation / observation of) two layers (1)		
	OR		
	Add to a polar solvent		
	Named polar solvent		
	Dissolves / no layers / miscible (1)		
	IGNORE references to IR		

Question Number	Acceptable Answers	Reject	Mark
23 (h)	Three marks for the diagram: One mark for a correct Maxwell-Boltzmann diagram with labelled axes and any one curve Allow fraction /proportion / percentage of particles / molecules on y axis One mark for the peak at $37^{\circ} \mathrm{C}$ to be lower and clearly to the right of the peak for lab temperature; E_{a} / A_{e} / Activation energy shown in suitable place (right of both peaks) Explanation: A greater proportion of /more particles / nanorockets have or exceed E_{a} / have sufficient energy to react	Atoms Curve not starting from the origin Curve touching the x axis Curve going up or making a plateau over $1 / 2$ way up on the right hand side	4

Question Number	Acceptable Answers	Reject	Mark
23 (i)	Lowers activation energy (by) providing alternative reaction pathway (1) ALLOW 'catalytic pathway' OR ALTERNATIVE ANSWER Adsorbed onto the (catalytic) surface Weakened bonds / desorbed from surface		2

Question Number	Acceptable Answers	Reject	Mark
23 (j)	Delocalised electrons/ Sea of electrons (1)	Just 'free electrons'	2
	(Electrons) can move (and carry charge) (1)	Just 'carry charge'	

Question Number	Acceptable Answers	Reject	Mark
$23(\mathrm{k})$	In the long term OR Due to absorption And they could be dangerous / toxic / carcinogenic / have side-effects	Just 'skin reaction/allergy' without reference to long term effect Block pores Just 'harmful'	1

Total for Section C = 23 Marks
Total for paper $=80$ Marks

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code US035561 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Welsh Assembly Government

Rewarding Learning

